ANSYS-Based Structural Analysis Study of Elevated Spherical Tank Exposed to Earthquake

Authors

  • Mahmoud S. Al-Khafaji
  • Ahlam S. Mohammed
  • Muna A. Salmanc University of Technology

Abstract

Damage of elevated tanks during earthquakes can jeopardize the supply of drinking water and causes significant economic losses. Therefore, seismic analysis of tanks containing liquids requires special consideration. Knowledge of liquid hydrodynamic pressures developed during an earthquake is important for tank design. This paper aims to verify the dynamic reaction of structural systems of spherical elevated steel tanks containing water, and determine the natural frequencies that contribute to the physical response, as well as seismic analysis of the tank. A three dimensional Finite Element Model was developed to identify the main parameters involved in this response for three different fullness ratio (0.00%, 53.30% and 71.11%) using the ANSYS software. The model was implemented and validated based on the results of a previously conducted experimental study. Moreover, it was analyzed under the impact of the most severe earthquake that Iraq was exposed to in 2017 with a magnitude of 7.2 on the Richter scale. The results showed a very good agreement in natural frequency with a discrepancy (root mean square error) of 2% (0.05 Hz), 6.9% (0.15 Hz) and 9.5% (0.2 Hz) for the fullness ratio 0%, 53.3% and 71.11%, respectively In addition, the selected element type and the method of analysis are applicable. Moreover, results of displacement and stresses from earthquake analysis indicated that the spherical tank could lose stability in time 1.4 seconds of the proposed time for the worst part of the earthquake, when displacement records highest values in the direction of earthquake for the tank body at...

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2021-06-25

How to Cite

Al-Khafaji, M. S., Mohammed, A. S. ., & Salmanc, M. A. (2021). ANSYS-Based Structural Analysis Study of Elevated Spherical Tank Exposed to Earthquake. Engineering and Technology Journal, 39(6), 870-883. Retrieved from http://engtechjournal.org/index.php/et/article/view/460